随着工业自动化的高速发展, 人工智能和机器学习越来越得到广泛的应用,下列对人工智能和机器学习作简要介绍。
人工智能(AI),指由人制造出来的可以表现出智能的机器。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
AI的核心问题包括建构能够跟人类似甚至超卓的推理、知识、规划、学习、交流、感知、移物、使用工具和操控机械的能力等。当前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。思维来源于大脑,而思维控制行为,行为需要意志去实现,而思维又是对所有数据采集的整理,相当于数据库,所以人工智能最后可能会演变为机器替换人类。
机器学习(ML)是亚瑟·塞缪尔在1959年用机器解决跳棋游戏的背景下提出的。该术语指的是一种计算机程序,它可以学习产生一种行为,而这种行为不是由程序的作者明确编程实现的。相反,它能够显示出作者可能完全没有意识到的行为。
机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。
机器学习进入新阶段的重要表现在下列诸方面:
(1)机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。
(2)结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。
(3)机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。
(4)各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。
(5)与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
在自动化控制中,在可编程逻辑控制器(PLC)应用中。PLC可以帮助同步生产线控制,包括速度、物料流入和流出之间的相互作用以及其它内容。通过PLC,运行人员可以坐在带机器视觉摄像头的输送机前。当产品放在输送机上时,它会看到产品在输送机上,并进行下一个循环。虽然PLC正确执行控制反馈,但在此过程中没有数据收集——只有被动、半自动控制。
为了充分利用自动化和相关数据,工厂应考虑将工业PC与高速自动化和传感器相结合。这些系统为PLC的逻辑编程提供了先进的计算能力和信息控制。边缘网关也支持此配置,以帮助管理数据流。
实时分析和数据采集
在获取实时分析的最终数据之前,组织需要采取的步骤包括:
■更好地了解输入-输出机制;
■使用合适的传感器收集数据;
■通过低代码/无代码应用,启用闭环控制程序。
更智能的系统有助于在整个产品生命周期中收集数据,从而释放前述的诸多好处。数据还可以传输到云端,以进行大数据分析,或在边缘靠近机器的地方进行实时处理。通过将自动化过程与人工智能(AI)和机器学习(ML)相结合,开发闭环控制,可以释放更多价值。
使用AI和ML来释放更多价值
ML可以从闭环控制中获取大量数据,并将其合成为可操作的信息,从而推动更好的流程和更明智的决策。ML帮助团队将信息用于控件,这些控件可以在不停机的情况下,实时调整生产线的参数。ML还可用于识别和消除工作中的非增值活动,例如在一段行程后测试产品。
AI和ML价值的另一个驱动因素是视觉。例如,从支持工业PC的闭环系统中获取数据,机器可以检测产品上的瑕疵或其它缺陷,如划痕。此异常检测功能,允许系统映射到造成这些问题的热点,并标记要检查的潜在问题区域。
当自动化发挥其最大功能时,它可以强制执行流程中的战略纪律。自动化是一种受控机制,允许机器对机器(M2M)接口以正确的步骤顺序驱动产品,从原材料直至转化为成品。产品性能、质量、周期时间和工作站内外管理物流的信息流,与自动化同步完成。当自动化与AI/ML相结合时,就为系统带来更多可能性。
Copyright © 2022 厦门雄霸电子商务有限公司漳州分公司 All Rights Reserved. 闽ICP备20016028号